Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Novel Robust Stability Criteria for Stochastic Hopfield Neural Networks With Time Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rongni Yang ; Dept. of Control Sci. & Eng., Harbin Inst. of Technol., Harbin ; Huijun Gao ; Peng Shi

In this paper, the problem of asymptotic stability for stochastic Hopfield neural networks (HNNs) with time delays is investigated. New delay-dependent stability criteria are presented by constructing a novel Lyapunov-Krasovskii functional. Moreover, the results are further extended to the delayed stochastic HNNs with parameter uncertainties. The main idea is based on the delay partitioning technique, which differs greatly from most existing results and reduces conservatism. Numerical examples are provided to illustrate the effectiveness and less conservativeness of the developed techniques.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:39 ,  Issue: 2 )