By Topic

Detection and Prognostics on Low-Dimensional Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srivastava, A.N. ; Intell. Syst. Div. & the Intell. Data Understanding Group, NASA Ames Res. Center, Moffett Field, CA ; Das, S. ; Das, S.

This paper describes the application of known and novel prognostic algorithms on systems that can be described by low-dimensional, potentially nonlinear dynamics. The methods rely on estimating the conditional probability distribution of the output of the system at a future time given knowledge of the current state of the system. We show how to estimate these conditional probabilities using a variety of techniques, including bagged neural networks and kernel methods such as Gaussian process regression (GPR). The results are compared with standard method such as the nearest neighbor algorithm. We demonstrate the algorithms on a real-world dataset and a simulated dataset. The real-world dataset consists of the intensity of an NH3 laser. The laser dataset has been shown by other authors to exhibit low-dimensional chaos with sudden drops in intensity. The simulated dataset is generated from the Lorenz attractor and has known statistical characteristics. On these datasets, we show the evolution of the estimated conditional probability distribution, the way it can act as a prognostic signal, and its use as an early warning system. We also review a novel approach to perform GPR with large numbers of data points.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:39 ,  Issue: 1 )