By Topic

Power Transformer Fault Classification Based on Dissolved Gas Analysis by Implementing Bootstrap and Genetic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Shintemirov ; Dept. of Electr. Eng. & Electron., Univ. of Liverpool, Liverpool ; W. Tang ; Q. H. Wu

This paper presents an intelligent fault classification approach to power transformer dissolved gas analysis (DGA), dealing with highly versatile or noise-corrupted data. Bootstrap and genetic programming (GP) are implemented to improve the interpretation accuracy for DGA of power transformers. Bootstrap preprocessing is utilized to approximately equalize the sample numbers for different fault classes to improve subsequent fault classification with GP feature extraction. GP is applied to establish classification features for each class based on the collected gas data. The features extracted with GP are then used as the inputs to artificial neural network (ANN), support vector machine (SVM) and K-nearest neighbor ( KNN) classifiers for fault classification. The classification accuracies of the combined GP-ANN, GP-SVM, and GP-KNN classifiers are compared with the ones derived from ANN, SVM, and KNN classifiers, respectively. The test results indicate that the developed preprocessing approach can significantly improve the diagnosis accuracies for power transformer fault classification.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:39 ,  Issue: 1 )