By Topic

Shearlet-Based Total Variation Diffusion for Denoising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Easley, G.R. ; Syst. Planning Corp., Arlington, VA ; Labate, D. ; Colonna, F.

We propose a shearlet formulation of the total variation (TV) method for denoising images. Shearlets have been mathematically proven to represent distributed discontinuities such as edges better than traditional wavelets and are a suitable tool for edge characterization. Common approaches in combining wavelet-like representations such as curvelets with TV or diffusion methods aim at reducing Gibbs-type artifacts after obtaining a nearly optimal estimate. We show that it is possible to obtain much better estimates from a shearlet representation by constraining the residual coefficients using a projected adaptive total variation scheme in the shearlet domain. We also analyze the performance of a shearlet-based diffusion method. Numerical examples demonstrate that these schemes are highly effective at denoising complex images and outperform a related method based on the use of the curvelet transform. Furthermore, the shearlet-TV scheme requires far fewer iterations than similar competitors.

Published in:

Image Processing, IEEE Transactions on  (Volume:18 ,  Issue: 2 )