By Topic

A novel thermal sensor to monitor the gas-liquid phase interface in microfluidic channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sun Rock Choi ; Dept. of Mech. Eng., POSTECH, Pohang ; Jonggan Hong ; Joonwon Kim ; Kim, Dongsik

We designed and fabricated a novel microscale sensor for monitoring the motion of the gas-liquid interface in microchannels, based on the 3omega thermal-analysis method. As the sensor employs an AC hot-film technique to probe the movement of phase interface, it is more sensitive and noise-resistant than the already developed DC technique. The sensor is composed of a thin-film heater integrated into a PDMS microchannel fabricated on a glass substrate. The performance of the sensor is characterized by examining water injection and liquid evaporation processes. The results show good agreement with those by optical inspection. It is also demonstrated that the sensor can effectively monitor the long-term evaporation process of water in a microchannel. The result demonstrates strong potential of the proposed sensor as an integrated real-time probe to monitor a variety of microfluidic phenomena.

Published in:

Sensors, 2008 IEEE

Date of Conference:

26-29 Oct. 2008