By Topic

SOI diode temperature sensor operated at ultra high temperatures - a critical analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Santra, S. ; Eng. Dept., Univ. of Cambridge, Cambridge ; Guha, P.K. ; Ali, S.Z. ; Haneef, I.
more authors

This paper investigates the performance of diode temperature sensors when operated at ultra high temperatures (above 250degC). A low leakage silicon on insulator (SOI) diode was designed and fabricated in a 1 mum CMOS process and suspended within a dielectric membrane for efficient thermal insulation. The diode can be used for accurate temperature monitoring in a variety of sensors such as microcalorimeters, IR detectors, or thermal flow sensors. A CMOS compatible micro-heater was integrated with the diode for local heating. It was found that the diode forward voltage exhibited a linear dependence on temperature as long as the reverse saturation current remained below the forward driving current. We have proven experimentally that the maximum temperature can be as high as 550degC. Long term continuous operation at high temperatures (400degC) showed good stability of the voltage drop. Furthermore, we carried out a detailed theoretical analysis to determine the maximum operating temperature and explain the presence of nonlinearity factors at ultra high temperatures.

Published in:

Sensors, 2008 IEEE

Date of Conference:

26-29 Oct. 2008