By Topic

Capacitive micromachined ultrasonic transducer as a chemical sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kwan Kyu Park ; Edward L. Ginzton Lab., Stanford Univ., Stanford, CA ; Lee, H.J. ; Kupnik, M. ; Oralkan, O.
more authors

We present a resonant chemical sensor based on a capacitive micromachined ultrasonic transducer (CMUT) technology. Depending on the frequency of the devices (18 to 32 MHz), the mass sensitivity per unit area ranges from 73 to 130 zg/Hz/mum2. We functionalized the 18-MHz device with polyisobutylene (PIB) to detect dimethyl methylphosphonate (DMMP), a common simulant for the sarin nerve agent. Even with only a 50-nm thick coating layer, our sensor has a high volume sensitivity of 37 ppbv/Hz to DMMP in air. Taking advantage of multiple CMUT cells (100 to 2240), all resonating in parallel, the sensor achieves an equivalent volume resolution of 21 ppbv (parts per 109 by volume) to DMMP. In addition, 200 test cycles with DMMP applied over 26 hours revealed a zero false alarm rate and a 4.7% (3-sigma) variation of volume sensitivity to DMMP. By using principal component analysis (PCA), we successfully classified all analytes in 21 experiments, and we present the results of pattern recognition. This work demonstrates that CMUT has a great potential for the sensitive, reliable, and yet portable chemical sensing systems.

Published in:

Sensors, 2008 IEEE

Date of Conference:

26-29 Oct. 2008