By Topic

Neural modeling for time series: A statistical stepwise method for weight elimination

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cottrell, M. ; Centre de Recherche SAMOS, Paris 1 Univ., France ; Girard, B. ; Girard, Y. ; Mangeas, M.
more authors

Many authors use feedforward neural networks for modeling and forecasting time series. Most of these applications are mainly experimental, and it is often difficult to extract a general methodology from the published studies. In particular, the choice of architecture is a tricky problem. We try to combine the statistical techniques of linear and nonlinear time series with the connectionist approach. The asymptotical properties of the estimators lead us to propose a systematic methodology to determine which weights are nonsignificant and to eliminate them to simplify the architecture. This method (SSM or statistical stepwise method) is compared to other pruning techniques and is applied to some artificial series, to the famous Sunspots benchmark, and to daily electrical consumption data

Published in:

Neural Networks, IEEE Transactions on  (Volume:6 ,  Issue: 6 )