By Topic

Mobile object recognition using multi-sensor information fusion in urban environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Katrin Amlacher ; JOANNEUM Res. Forschungsgesellschaft, Inst. of Digital Image Process. Wastiangasse, Graz ; Patrick Luley ; Gerald Fritz ; Alexander Almer
more authors

Mobile vision services have recently been proposed for the support of urban nomadic users. A major issue for the performance of the service - involving indexing into a huge amount of reference images - is ambiguity in the visual information. We propose to exploit geo-information in association with visual features to restrict the search within a local context. In a mobile image retrieval task of urban object recognition, we determine object hypotheses from (i) mobile image based appearance and (ii) GPS based positioning and investigate the performance of Bayesian information fusion with respect to a geo-referenced image database (TSG-20). The results from geo-referenced image capture in an urban scenario prove a significant increase in recognition accuracy (> 10%) when using the geo-contextual information in contrast to omitting geo-information.

Published in:

2008 15th IEEE International Conference on Image Processing

Date of Conference:

12-15 Oct. 2008