By Topic

Using local regression kernels for statistical object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hae Jong Seo ; Electr. Eng. Dept., Univ. of California at Santa Cruz, Santa Cruz, CA ; Milanfar, P.

We present a novel approach to the problem of detection of visual similarity between a template image, and patches in a given image. The method is based on the computation of a local kernel from the template, which measures the likeness of a pixel to its surroundings. This kernel is then used as a descriptor from which features are extracted and compared against analogous features from the target image. Comparison of the features extracted is carried out using canonical correlations analysis. The overall algorithm yields a scalar resemblance map (RM) which indicates the statistical likelihood of similarity between a given template and all target patches in an image being examined. Performing a statistical test on the resulting RM identifies similar objects with high accuracy and is robust to various challenging conditions such as partial occlusion, and illumination change.

Published in:

Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on

Date of Conference:

12-15 Oct. 2008