By Topic

Salient region detection and feature extraction in 3D visual data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming Dong ; Department of Computer Science, Wayne State University, Detroit, MI 48202, USA ; Yanhua Chen

Saliency detection and local feature extraction for 2D images have received extensive attention recently. In this paper, we propose saliency detection and feature extraction techniques for 3D visual data. Our algorithm directly works in 3D scale space and detects interesting regions in different scales. We then extract a local descriptor based on gradient location-orientation histogram which is invariant to scale and rotation of the 3D object. The proposed methodology has been tested on 3D synthetic and Magnetic Resonance Imaging (MRI) data sets. The performance of the algorithm is evaluated based on the repeatability of saliency detection and descriptor matching, after 3D transformation and in the presence of noise.

Published in:

2008 15th IEEE International Conference on Image Processing

Date of Conference:

12-15 Oct. 2008