By Topic

Using region semantics and visual context for scene classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Spyrou, E. ; Video & Multimedia Lab., Nat. Tech. Univ. of Athens, Athens ; Mylonas, P. ; Avrithis, Y.

In this paper we focus on scene classification and detection of high-level concepts within multimedia documents, by introducing an intermediate contextual approach as a means of exploiting the visual context of images. More specifically, we introduce and model a novel relational knowledge representation, founded on topological and semantic relations between the concepts of an image. We further develop an algorithm to address computationally efficient handling of visual context and extraction of mid-level region characteristics. Based on the proposed knowledge model, we combine the notion of visual context with region semantics, in order to exploit their efficacy in dealing with scene classification problems. Finally, initial experimental results are presented, in order to demonstrate possible applications of the proposed methodology.

Published in:

Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on

Date of Conference:

12-15 Oct. 2008