By Topic

A Novel LMS Algorithm Applied to Adaptive Noise Cancellation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. M. Gorriz ; Dept. of Signal Theor., & Commun., Univ. of Granada, Granada ; Javier Ramirez ; S. Cruces-Alvarez ; Carlos G. Puntonet
more authors

In this letter, we propose a novel least-mean-square (LMS) algorithm for filtering speech sounds in the adaptive noise cancellation (ANC) problem. It is based on the minimization of the squared Euclidean norm of the difference weight vector under a stability constraint defined over the a posteriori estimation error. To this purpose, the Lagrangian methodology has been used in order to propose a nonlinear adaptation rule defined in terms of the product of differential inputs and errors which means a generalization of the normalized (N)LMS algorithm. The proposed method yields better tracking ability in this context as shown in the experiments which are carried out on the AURORA 2 and 3 speech databases. They provide an extensive performance evaluation along with an exhaustive comparison to standard LMS algorithms with almost the same computational load, including the NLMS and other recently reported LMS algorithms such as the modified (M)-NLMS, the error nonlinearity (EN)-LMS, or the normalized data nonlinearity (NDN)-LMS adaptation.

Published in:

IEEE Signal Processing Letters  (Volume:16 ,  Issue: 1 )