By Topic

Graphical Models for Joint Segmentation and Recognition of License Plate Characters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

We formulate the issue of joint image segmentation and recognition as an integrated statistical inference problem. A two-layer graphical model is proposed that supports the optimal segmentation and recognition in an unified Bayesian framework. Due to the explicit modeling of two tasks in the graphical model, an efficient non-iterative belief propagation algorithm is used for state estimation. The proposed approach is applied to automatic licence plate recognition (ALPR), and it outperforms traditional methods where the two tasks are implemented independently and sequentially.

Published in:

Signal Processing Letters, IEEE  (Volume:16 ,  Issue: 1 )