By Topic

Characterization of Nanomagnet Fringing Fields in Hybrid Semiconductor/Ferromagnetic Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bae, J.-U. ; Dept. of Electr. Eng., State Univ. of New York at Buffalo, Buffalo, NY ; Lin, T.-Y. ; Yoon, Y. ; Kim, S.J.
more authors

We describe the fabrication of a hybrid nanomagneto-electronic device, consisting of a GaAs/AlGaAs quantum wire that is bridged by a ferromagnetic gate, and study the influence of the nanomagnet fringing fields on the quantum-wire magneto-resistance. The nonplanar gate shows clear single-domain structure in magnetic-force microscopy, and a simple magnetization behavior in an external magnetic field. This behavior is reflected as a hysteretic variation of the quantum-wire magneto-resistance, whose magnitude is found to be consistent with theoretical predictions for ballistic electron transport through a spatially varying magnetic field.

Published in:

Magnetics, IEEE Transactions on  (Volume:44 ,  Issue: 12 )