Cart (Loading....) | Create Account
Close category search window

Fabrication and Characterization of a Polymeric Microcantilever With an Encapsulated Hotwire CVD Polysilicon Piezoresistor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kale, N.S. ; Dept. of Electr. Eng., Indian Inst. of Technol. Bombay, Mumbai, India ; Nag, S. ; Pinto, R. ; Ramgopal Rao, V.

We demonstrate a novel photoplastic nanoelectromechanical device that includes an encapsulated polysilicon piezoresistor. The temperature limitation that typically prevents deposition of polysilicon films on polymers was overcome by employing a hotwire CVD process. In this paper, we report the use of this process to fabricate and characterize a novel polymeric cantilever with an embedded piezoresistor. This device exploits the low Young's modulus of organic polymers and the high gauge factor of polysilicon. The fabricated device fits into the cantilever holder of an atomic force microscope (AFM) and can be used in conjunction with the AFM's liquid cell for detecting the adsorption of biochemicals. It enables differential measurement while preventing biochemicals from interfering with measurements using the piezoresistor. The mechanical and electromechanical characterization of the device is also reported in this paper. [2008-0108]

Published in:

Microelectromechanical Systems, Journal of  (Volume:18 ,  Issue: 1 )

Date of Publication:

Feb. 2009

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.