By Topic

Necessary and Sufficient Convergence Conditions for Algebraic Image Reconstruction Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gangrong Qu ; Sch. of Sci., Beijing Jiaotong Univ., Beijing ; Caifang Wang ; Ming Jiang

The Landweber scheme is an algebraic reconstruction method and includes several important algorithms as its special cases. The convergence of the Landweber scheme is of both theoretical and practical importance. Using the singular value decomposition (SVD), we derive an iterative representation formula for the Landweber scheme and consequently establish the necessary and sufficient conditions for its convergence. In addition to verifying the necessity and sufficiency of known convergent conditions, we find new convergence conditions allowing relaxation coefficients in an interval not covered by known results. Moreover, it is found that the Landweber scheme can converge within finite iterations when the relaxation coefficients are chosen to be the inverses of squares of the nonzero singular values. Furthermore, the limits of the Landweber scheme in all convergence cases are shown to be the sum of the minimum norm solution of a weighted least-squares problem and an oblique projection of the initial image onto the null space of the system matrix.

Published in:

IEEE Transactions on Image Processing  (Volume:18 ,  Issue: 2 )