Cart (Loading....) | Create Account
Close category search window
 

Power-Law Distributions of Component Size in General Software Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hatton, Les ; Fac. of Comput., Kingston Univ., Kingston on Thames, UK

This paper begins by modeling general software systems using concepts from statistical mechanics which provide a framework for linking microscopic and macroscopic features of any complex system. This analysis provides a way of linking two features of particular interest in software systems: first the microscopic distribution of defects within components and second the macroscopic distribution of component sizes in a typical system. The former has been studied extensively, but the latter much less so. This paper shows that subject to an external constraint that the total number of defects is fixed in an equilibrium system, commonly used defect models for individual components directly imply that the distribution of component sizes in such a system will obey a power-law Pareto distribution. The paper continues by analyzing a large number of mature systems of different total sizes, different implementation languages, and very different application areas, and demonstrates that the component sizes do indeed appear to obey the predicted power-law distribution. Some possible implications of this are explored.

Published in:

Software Engineering, IEEE Transactions on  (Volume:35 ,  Issue: 4 )

Date of Publication:

July-Aug. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.