By Topic

Shape and Motion Reconstruction from 3D-to-1D Orthographically Projected Data via Object-Image Relations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Matthew Ferrara ; Air Force Research Laboratory, Dayton ; Gregory Arnold ; Mark Stuff

This paper describes an invariant-based shape- and motion reconstruction algorithm for 3D-to-1D orthographically projected range data taken from unknown viewpoints. The algorithm exploits the object-image relation that arises in echo-based range data and represents a simplification and unification of previous work in the literature. Unlike one proposed approach, this method does not require uniqueness constraints, which makes its algorithmic form independent of the translation removal process (centroid removal, range alignment, etc.). The new algorithm, which simultaneously incorporates every projection and does not use an initialization in the optimization process, requires fewer calculations and is more straightforward than the previous approach. Additionally, the new algorithm is shown to be the natural extension of the approach developed by Tomasi and Kanade for 3D-to-2D orthographically projected data and is applied to a realistic inverse synthetic aperture radar imaging scenario, as well as experiments with varying amounts of aperture diversity and noise.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 10 )