By Topic

Multiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alzate, C. ; Dept. of Electr. Eng., Katholieke Univ. Leuven, Leuven, Belgium ; Suykens, J.A.K.

A new formulation for multiway spectral clustering is proposed. This method corresponds to a weighted kernel principal component analysis (PCA) approach based on primal-dual least-squares support vector machine (LS-SVM) formulations. The formulation allows the extension to out-of-sample points. In this way, the proposed clustering model can be trained, validated, and tested. The clustering information is contained on the eigendecomposition of a modified similarity matrix derived from the data. This eigenvalue problem corresponds to the dual solution of a primal optimization problem formulated in a high-dimensional feature space. A model selection criterion called the balanced line fit (BLF) is also proposed. This criterion is based on the out-of-sample extension and exploits the structure of the eigenvectors and the corresponding projections when the clusters are well formed. The BLF criterion can be used to obtain clustering parameters in a learning framework. Experimental results with difficult toy problems and image segmentation show improved performance in terms of generalization to new samples and computation times.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 2 )