By Topic

The Biometric Menagerie

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yager, N. ; Nat. Innovation Centre, Biometix Pty Ltd., Eveleigh, NSW, Australia ; Dunstone, T.

It is commonly accepted that users of a biometric system may have differing degrees of accuracy within the system. Some people may have trouble authenticating, while others may be particularly vulnerable to impersonation. Goats, wolves, and lambs are labels commonly applied to these problem users. These user types are defined in terms of verification performance when users are matched against themselves (goats) or when matched against others (lambs and wolves). The relationship between a user's genuine and impostor match results suggests four new user groups: worms, doves, chameleons, and phantoms. We establish formal definitions for these animals and a statistical test for their existence. A thorough investigation is conducted using a broad range of biometric modalities, including 2D and 3D faces, fingerprints, iris, speech, and keystroke dynamics. Patterns that emerge from the results expose novel, important, and encouraging insights into the nature of biometric match results. A new framework for the evaluation of biometric systems based on the biometric menagerie, as opposed to collective statistics, is proposed.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:32 ,  Issue: 2 )
Biometrics Compendium, IEEE