Cart (Loading....) | Create Account
Close category search window
 

estMax: Tracing Maximal Frequent Item Sets Instantly over Online Transactional Data Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ho Jin Woo ; Dept. of Comput. Sci., Yenisei Univ., Seoul, South Korea ; Won Suk Lee

Frequent item set mining is one of the most challenging issues for descriptive data mining. In general, its resulting set tends to produce a large number of frequent item sets. To represent them in a more compact notation, closed or maximal frequent item sets are often used but finding such item sets over online transactional data streams is not easy due to the requirements of a data stream. For this purpose, this paper proposes a method of tracing the set of MFIs instantly over an online data stream. The method, namely estMax, maintains the set of frequent item sets by a prefix tree and extracts all MFIs without any additional superset/subset checking mechanism. Upon processing a new transaction, those frequent item sets that are matched maximally by the transaction are newly marked in their corresponding nodes of the prefix tree as candidates for MFIs. At the same time, if any subset of a newly marked item set has been already marked as a candidate MFI by a previous transaction, it is cleared as well. By employing this additional step, it is possible to extract the set of MFIs at any moment. The performance of the estMax method is comparatively analyzed by a series of experiments to identify its various characteristics.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 10 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.