Cart (Loading....) | Create Account
Close category search window
 

Design considerations for low-power high-performance mobile logic and memory interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Palmer, R. ; Rambus Inc., Chapel Hill, NC ; Poulton, J. ; Fuller, Andrew ; Chen, J.
more authors

This paper highlights design considerations for low-power, high-performance mobile memory and logic interfaces, based on the results from the 14 mW, 6.25 Gb/s transceiver test chip demonstrated in 90 nm CMOS. One of the keys to achieving 2.25 mW/Gbps was the highly-sensitive, low-offset receiver. An accurate receiver enables low-swing signaling and requires less power and area from the transmitter. The smaller transceiver design in turn lowers the clock distribution power and improves the signal quality by presenting less loading to the clock and the channel, respectively. The improved signal quality enables even lower signal swing and a ldquospiral of goodnessrdquo continues. This paper examines these aspects in detail and discusses their potential implications to a broad spectrum of future low-power, high-performance mobile interface designs.

Published in:

Solid-State Circuits Conference, 2008. A-SSCC '08. IEEE Asian

Date of Conference:

3-5 Nov. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.