By Topic

Fast searching algorithm for vector quantisation based on features of vector and subvector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, S.X. ; Electron. Eng. Coll., Univ. of Electron. Sci. & Technol. of China, Chengdu ; Li, F.W. ; Zhu, W.L.

Vector quantisation (VQ) is an efficient technique for data compression and retrieval. But its encoding requires expensive computation that greatly limits its practical use. A fast algorithm for VQ encoding on the basis of features of vectors and subvectors is presented. Making use of three characteristics of a vector: the sum, the partial sum and the partial variance, a four-step eliminating algorithm is introduced. The proposed algorithm can reject a lot of codewords, while holding the same quality of encoded images as the full search algorithm (FSA). Experimental results show that the proposed algorithm needs only a little computational complexity and distortion calculation against the FSA. Compared with the equal-average equal-variance equal-norm nearest neighbour search algorithm based on the ordered Hadamard transform, the proposed algorithm reduces the number of distortion calculations by 8 to 61%. The average number of operations of the proposed algorithm is %79% of that of Zhibin%s method for all test images. The proposed algorithm outperforms most of existing algorithms.

Published in:

Image Processing, IET  (Volume:2 ,  Issue: 6 )