By Topic

Localization of Active Pathways in Peripheral Nerves: A Simulation Study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zariffa, J. ; Inst. of Biomater. & Biomed. Eng., Univ. of Toronto, Toronto, ON ; Popovic, M.R.

A methodology is investigated for determining the location of active pathways in a peripheral nerve using measurements from a multicontact cuff electrode. The problem is treated as an inverse problem of source localization and solved using the sLORETA algorithm, developed for the electroencephalogram/magnetoencephalogram source localization problem. Simulated measurements are generated corresponding to action potentials traveling along either one or three pathways in a rat sciatic nerve. The performance of the proposed methodology using these measurements is evaluated in terms of localization error, missed pathways, and spurious pathways. The source localization performance when assuming an idealized nerve anatomy is compared to that when the correct anatomy is known. The effect of a spatio-temporal constraint based on the nerve anatomy and electrophysiology is also investigated. The approach in its present form was not found to be sufficiently reliable for subfascicular localization in practice, due to mean localization errors in the 140-180 mum range, high numbers of spurious pathways, and low resolution. Nonetheless, the constraints were shown to produce a marked reduction in the number of spurious pathways. Conditions under which the source localization approach may be useful for peripheral nerves are discussed.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:17 ,  Issue: 1 )