By Topic

A Continuous STAPLE for Scalar, Vector, and Tensor Images: An Application to DTI Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Commowick, O. ; Dept. of Radiol., Children''s Hosp., Boston, MA ; Warfield, S.K.

The comparison of images of a patient to a reference standard may enable the identification of structural brain changes. These comparisons may involve the use of vector or tensor images (i.e., 3-D images for which each voxel can be represented as an RN vector) such as diffusion tensor images (DTI) or transformations. The recent introduction of the Log-Euclidean framework for diffeomorphisms and tensors has greatly simplified the use of these images by allowing all the computations to be performed on a vector-space. However, many sources can result in a bias in the images, including disease or imaging artifacts. In order to estimate and compensate for these sources of variability, we developed a new algorithm, called continuous STAPLE, that estimates the reference standard underlying a set of vector images. This method, based on an expectation-maximization method similar in principle to the validation method STAPLE, also estimates for each image a set of parameters characterizing their bias and variance with respect to the reference standard. We demonstrate how to use these parameters for the detection of atypical images or outliers in the population under study. We identified significant differences between the tensors of diffusion images of multiple sclerosis patients and those of control subjects in the vicinity of lesions.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:28 ,  Issue: 6 )