Cart (Loading....) | Create Account
Close category search window
 

DE-Based Reversible Data Hiding With Improved Overflow Location Map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongjian Hu ; Dept. of Comput. Sci., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon ; Lee, Heung-Kyu ; Jianwei Li

For difference-expansion (DE)-based reversible data hiding, the embedded bit-stream mainly consists of two parts: one part that conveys the secret message and the other part that contains embedding information, including the 2-D binary (overflow) location map and the header file. The first part is the payload while the second part is the auxiliary information package for blind detection. To increase embedding capacity, we have to make the size of the second part as small as possible. Tian's classical DE method has a large auxiliary information package. Thodi mitigated the problem by using a payload-independent overflow location map. However, the compressibility of the overflow location map is still undesirable in some image types. In this paper, we focus on improving the overflow location map. We design a new embedding scheme that helps us construct an efficient payload-dependent overflow location map. Such an overflow location map has good compressibility. Our accurate capacity control capability also reduces unnecessary alteration to the image. Under the same image quality, the proposed algorithm often has larger embedding capacity. It performs well in different types of images, including those where other algorithms often have difficulty in acquiring good embedding capacity and high image quality.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.