By Topic

A MAP-Based Algorithm for Destriping and Inpainting of Remotely Sensed Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huanfeng Shen ; Sch. of Resource & Environ. Sci., Wuhan Univ., Wuhan ; Liangpei Zhang

Remotely sensed images often suffer from the common problems of stripe noise and random dead pixels. The techniques to recover a good image from the contaminated one are called image destriping (for stripes) and image inpainting (for dead pixels). This paper presents a maximum a posteriori (MAP)-based algorithm for both destriping and inpainting problems. The main advantage of this algorithm is that it can constrain the solution space according to a priori knowledge during the destriping and inpainting processes. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a linear image observation model, and a robust Huber-Markov model is used as the prior PDF. The gradient descent optimization method is employed to produce the desired image. The proposed algorithm has been tested using moderate resolution imaging spectrometer images for destriping and China-Brazil Earth Resource Satellite and QuickBird images for simulated inpainting. The experiment results and quantitative analyses verify the efficacy of this algorithm.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 5 )