By Topic

Automatic Reconfiguration of Petri Net Controllers for Reconfigurable Manufacturing Systems With an Improved Net Rewriting System-Based Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Li ; Sch. of Autom., Southeast Univ., Nanjing ; Xianzhong Dai ; Zhengda Meng

The advent of reconfigurable manufacturing systems (RMSs) has given rise to a challenging problem, i.e., how to reconfigure rapidly and validly a RMS supervisory controller in response to frequent changes in the manufacturing system configuration driven by fluctuating market. This paper presents an improved net rewriting system (INRS)-based method for automatic reconfiguration of Petri net (PN) supervisory controllers for RMS. We begin with presenting the INRS which overcomes the limitations of the net rewriting system and can dynamically change the structure of a PN without damaging its important behavioral properties. Based on INRS, a method for design reconfigurable PN controllers of RMS is introduced. Subsequently, we presented an INRS-based method for rapidly automatic reconfiguration of this class of PN controllers. In the reconfiguration method, changes in a RMS configuration can be formalized and act on an existing controller to make it reconfigure rapidly into a new one. Noticeably, no matter the design or reconfiguration, the expected behavioral properties of the resultant PN controllers are guaranteed. Thus, efforts for verification of the results can be avoided naturally. We also illustrate the reconfiguration of a PN controller for a reconfigurable manufacturing cell.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:6 ,  Issue: 1 )