By Topic

Digital Image Retrieval Using Intermediate Semantic Features and Multistep Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dengsheng Zhang ; Gippsland Sch. of IT, Monash Univ., Churchill, VIC ; Ying Liu ; Jin Hou

Recently, semantic image retrieval has attracted large amount of interest due to the rapid growth of digital image storage. However, existing approaches have severe limitations. In this paper, a new approach to digital image retrieval using intermediate semantic features and multistep search has been proposed. Instead of looking for human level semantics which is too challenging at this stage, the research looks for heuristic information and intermediate semantic features which can describe image content objectively. Different from the conventional approaches, the intermediate features are used as filters to eliminate large amount of irrelevant images. Conventional content based image retrieval techniques and relevance feedback (RF) are applied following the filtering to improve the retrieval accuracy. The proposed system has the power of capturing both regional features and global features, and making use of both semantic features and low level features. The proposed system also uses a powerful user interface to provide users with convenient retrieval mechanisms including SQL, RF and query by example. Results show the system has a significant gain over existing region based and global image retrieval approaches.

Published in:

Digital Image Computing: Techniques and Applications (DICTA), 2008

Date of Conference:

1-3 Dec. 2008