By Topic

A distributed and efficient power control algorithm for wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rasti, M. ; Dept. of Electr. & Comput. Eng., Tarbiat Modares Univ., Tehran ; Sharafat, A.R. ; Zander, J.

In the well-known distributed target-SIR tracking power control algorithm, when the target-SIR requirements are not reachable for all users, all non-supported users (those who do not reach their target SIRs) transmit at their maximum power. Such users inefficiently consume their energies, and introduce unnecessary interference to others, which in turn unnecessarily increases the number of non-supported users. To deal with this, the smallest number of users should be removed due to infeasibility of the system (gradual removal problem). We present a new distributed constrained power control (DCPC) algorithm to address the gradual removal problem. The basic idea is that any transmitting user whose required transmit power for reaching its target-SIR exceeds its maximum power is temporarily removed. Each temporarily removed user resumes its transmission if its required transmit power for reaching its target-SIR goes below a given threshold (lower than its maximum power). This threshold is determined by each removed user in a distributed manner using only local information. We will show that our proposed algorithm has at least one-fixed point (i.e., its convergence can be guaranteed), and at the equilibrium where the algorithm converges, all transmitting users (the users whose transmit powers are greater than zero) reach their target SIRs consuming the minimum aggregate transmit power. Furthermore, in contrast to the existing DCPC algorithms, no user is unnecessarily removed in our proposed scheme, i.e., it is efficient. Our simulation results confirm our analytic developments and show that our scheme outperforms the existing DCPCs in addressing the gradual removal problem, in terms of convergence, outage probability and power consumption.

Published in:

Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on

Date of Conference:

15-18 Sept. 2008