By Topic

Correlation and capacity of measured multi-user MIMO channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Florian Kaltenberger ; Institute Eurecom, 2229, Route des Cretes - B.P. 193 06904, Sophia Antipolis, France ; David Gesbert ; Raymond Knopp ; Marios Kountouris

In multi-user multiple-input multiple-output (MU-MIMO) systems, spatial multiplexing can be employed to increase the throughput without the need for multiple antennas and expensive signal processing at the user equipments. In theory, MU-MIMO is also more immune to most of propagation limitations plaguing single-user MIMO (SU-MIMO) systems, such as channel rank loss or antenna correlation. However, in this paper we show that this is not always true. We compare the capacity and the correlation of measured MU-MIMO channels for both outdoor and indoor scenarios. The measurement data has been acquired using Eurecompsilas MIMO openair sounder (EMOS). The EMOS can perform real-time MIMO channel measurements synchronously over multiple users. The results show that in most scenarios MU-MIMO provides a higher throughput than SU-MIMO also in the measured channels. However, in outdoor scenarios with a line of sight, the capacity drops significantly when the users are close together, due to high correlation at the transmitter side of the channel. In such a case, the performance of SU-MIMO and MU-MIMO is comparable.

Published in:

2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications

Date of Conference:

15-18 Sept. 2008