By Topic

Joint turbo channel estimation and data recovery in fast fading mobile coded OFDM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Daniel N. Liu ; Department of Electrical Engineering, University of California Los Angeles, 90095 USA ; Michael P. Fitz

Orthogonal frequency division multiplexing (OFDM) systems suffer performance degradation in fast fading channels due to intercarrier interference (ICI). Combining frequency domain equalization and bit-interleaved coded modulation (BICM), the iterative receiver is able to harvest both temporal and frequency diversity. In order to perform coherent detection and estimation, channel state information (CSI) is critical. Conventional frequency domain channel estimation (CE) methods have an irreducible error floor at high normalized Doppler frequency fdTs, since ICI corrupts the orthogonality among subcarriers. Considering that the fast time-varying channel is also a source of temporal diversity, CE ought to take place in the pre-FFT time domain. With soft a priori information about the data symbols becomes available, this paper proposes a turbo channel estimator (TCE) structure which provides a way to consistently improve the bit error rate (BER). The complexity of TCE is further reduced by completely avoiding matrix inversion. Simulation results demonstrate that the PSAM system with TCE achieves no ICI with normalized Doppler frequency fdTs up to 20.46% with realistic mobile WiMAX channel environment.

Published in:

2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications

Date of Conference:

15-18 Sept. 2008