Cart (Loading....) | Create Account
Close category search window
 

Accuracy enhancement of an indoor ANN-based fingerprinting location system using Kalman filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Outemzabet, S. ; Ecole Polytech. de Montreal, Montreal, QC ; Nerguizian, C.

This paper presents an accuracy enhancement solution to mobilepsilas location and tracking systems in indoor wireless local area network (WLAN) environments. The enhancement method consists of the Kalman filtering application to an artificial neural network (ANN) based fingerprinting location technique. The application of Kalman filtering has the advantage of using information about the mobilepsilas motion to reduce location errors (caused by the WLAN received signal strength- RSS variations) and to avoid trajectory discontinuities (caused by the static estimation of the ANN-based fingerprinting technique). To process the RSS-based fingeprinting location technique, two ANN-based pattern-matching algorithms have been examined: the generalized regression neural network (GRNN) and the multi-layer perceptron (MLP) and they have been compared to the classic K-nearest neighbors (KNN) method. Experimental results, conducted in a specific in-building environment, showed that the GRNN algorithm performs better than the MLP and KNN algorithms. The application of Kalman filtering to the considered GRNN-based fingerprinting location technique improved the location accuracy of about 22.4 % in terms of location mean error.

Published in:

Personal, Indoor and Mobile Radio Communications, 2008. PIMRC 2008. IEEE 19th International Symposium on

Date of Conference:

15-18 Sept. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.