By Topic

Texture classification and segmentation using wavelet frames

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Unser, M. ; Nat. Inst. of Health, Bethesda, MD, USA

This paper describes a new approach to the characterization of texture properties at multiple scales using the wavelet transform. The analysis uses an overcomplete wavelet decomposition, which yields a description that is translation invariant. It is shown that this representation constitutes a tight frame of l2 and that it has a fast iterative algorithm. A texture is characterized by a set of channel variances estimated at the output of the corresponding filter bank. Classification experiments with l2 Brodatz textures indicate that the discrete wavelet frame (DWF) approach is superior to a standard (critically sampled) wavelet transform feature extraction. These results also suggest that this approach should perform better than most traditional single resolution techniques (co-occurrences, local linear transform, and the like). A detailed comparison of the classification performance of various orthogonal and biorthogonal wavelet transforms is also provided. Finally, the DWF feature extraction technique is incorporated into a simple multicomponent texture segmentation algorithm, and some illustrative examples are presented

Published in:

Image Processing, IEEE Transactions on  (Volume:4 ,  Issue: 11 )