Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

Experimental results of localization of moving underwater signal by adaptive beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gershman, A.B. ; Signal Theor. Dept., Ruhr-Univ., Bochum, Germany ; Turchin, V.I. ; Zverev, V.A.

The problem of weak moving signal localization and tracking in the presence of single motionless strong interference is investigated using real data of an underwater experiment in the Baltic sea (Sept. 1990) with a horizontal receiving array of 64 hydrophones and with two independent powerful narrowband sources imitating the signal and interference. Three simple adaptive beamforming methods were employed for the experimental data processing. The first one is based on the well-known projection approach to adaptive beamforming, the second method uses the adaptive canceler approach (also termed the dipole pattern method), and the third method combines these approaches. The signal-to-interference power ratio (SIR) threshold of the signal localization and tracking is evaluated by a special technique, which allows examination of the considered algorithms with change of the SIR in consecutive order. The results of the data processing show the high possibilities of signal localization in the presence of strong interference. The combined method performs better than the methods considered and enables localization of the signal source up to an SIR≃-25 dB

Published in:

Signal Processing, IEEE Transactions on  (Volume:43 ,  Issue: 10 )