By Topic

An adaptive optimal-kernel time-frequency representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. L. Jones ; Coordinated Sci. Lab., Illinois Univ., Urbana, IL, USA ; R. G. Baraniuk

Time-frequency representations with fixed windows or kernels figure prominently in many applications, but perform well only for limited classes of signals. Representations with signal-dependent kernels can overcome this limitation. However, while they often perform well, most existing schemes are block-oriented techniques unsuitable for on-line implementation or for tracking signal components with characteristics that change with time. The time-frequency representation developed in the present paper, based on a signal-dependent radially Gaussian kernel that adapts over time, surmounts these difficulties. The method employs a short-time ambiguity function both for kernel optimization and as an intermediate step in computing constant-time slices of the representation. Careful algorithm design provides reasonably efficient computation and allows on-line implementation. Certain enhancements, such as cone-kernel constraints and approximate retention of marginals, are easily incorporated with little additional computation. While somewhat more expensive than fixed kernel representations, this new technique often provides much better performance. Several examples illustrate its behavior on synthetic and real-world signals

Published in:

IEEE Transactions on Signal Processing  (Volume:43 ,  Issue: 10 )