Cart (Loading....) | Create Account
Close category search window

Combined instrumental variable and subspace fitting approach to parameter estimation of noisy input-output systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Stoica, Petre ; Dept. of Technol., Uppsala Univ., Sweden ; Cedervall, M. ; Eriksson, A.

The paper considers the problem of estimating the parameters of linear discrete-time systems from noise-corrupted input-output measurements, under fairly general conditions: the output and input noises may be auto-correlated and they may be cross-correlated as well. By using the instrumental-variable (IV) principle a covariance matrix is obtained, the singular vectors of which bear complete information on the parameters of the system under study. A weighted subspace fitting (WSF) procedure is then employed on the sample singular vectors to derive estimates of the parameters of the system. The combined IV-WSF method proposed in the present paper is noniterative and simple to use. Its large-sample statistical performance is analyzed in detail and the theoretical results so obtained are used to predict the behavior of the method in samples with practical lengths. Several numerical examples are included to show the agreement between the theoretically predicted and the empirically observed performances

Published in:

Signal Processing, IEEE Transactions on  (Volume:43 ,  Issue: 10 )

Date of Publication:

Oct 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.