By Topic

Acquisition of linguistic patterns for knowledge-based information extraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jun-Tae Kim ; Dept. of Comput. Eng., Dongguk Univ., Seoul, South Korea ; D. I. Moldovan

The paper presents an automatic acquisition of linguistic patterns that can be used for knowledge based information extraction from texts. In knowledge based information extraction, linguistic patterns play a central role in the recognition and classification of input texts. Although the knowledge based approach has been proved effective for information extraction on limited domains, there are difficulties in construction of a large number of domain specific linguistic patterns. Manual creation of patterns is time consuming and error prone, even for a small application domain. To solve the scalability and the portability problem, an automatic acquisition of patterns must be provided. We present the PALKA (Parallel Automatic Linguistic Knowledge Acquisition) system that acquires linguistic patterns from a set of domain specific training texts and their desired outputs. A specialized representation of patterns called FP structures has been defined. Patterns are constructed in the form of FP structures from training texts, and the acquired patterns are tuned further through the generalization of semantic constraints. Inductive learning mechanism is applied in the generalization step. The PALKA system has been used to generate patterns for our information extraction system developed for the fourth Message Understanding Conference (MUC-4)

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:7 ,  Issue: 5 )