Cart (Loading....) | Create Account
Close category search window
 

Support Vector Machines and Random Forests Modeling for Spam Senders Behavior Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Unwanted and malicious messages dominate email traffic and pose a great threat to the utility of email communications. Reputation systems have been getting momentum as the solution. Such systems extract email senders behavior data based on global sending distribution, analyze them and assign a value of trust to each IP address sending email messages. We build two models for the classification purpose. One is based on support vector machines (SVM) and the other is random forests(RF). Experimental results show that either classifier is effective. RF is slightly more accurate, but more expensive in terms of both time and space. SVM produces similar accuracy in a much faster manner if given modeling parameters. These classifiers can contribute to a reputation system as one source of analysis and increase its accuracy.

Published in:

Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE

Date of Conference:

Nov. 30 2008-Dec. 4 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.