By Topic

Distributed Regression in Sensor Networks with a Reduced-Order Kernel Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Honeine, P. ; Inst. Charles Delaunay (FRE CNRS 2848) - LM2S, Univ. de Technol. de Troyes, Troyes ; Essoloh, M. ; Richard, C. ; Snoussi, H.

Over the past few years, wireless sensor networks received tremendous attention for monitoring physical phenomena, such as the temperature field in a given region. Applying conventional kernel regression methods for functional learning such as support vector machines is inappropriate for sensor networks, since the order of the resulting model and its computational complexity scales badly with the number of available sensors, which tends to be large. In order to circumvent this drawback, we propose in this paper a reduced-order model approach. To this end, we take advantage of recent developments in sparse representation literature, and show the natural link between reducing the model order and the topology of the deployed sensors. To learn this model, we derive a gradient descent scheme and show its efficiency for wireless sensor networks. We illustrate the proposed approach through simulations involving the estimation of a spatial temperature distribution.

Published in:

Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE

Date of Conference:

Nov. 30 2008-Dec. 4 2008