Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Integration of an electrooptic polymer in an integrated optics circuit on silicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Faderl, L. ; LETI CEA-Technol. Avancees, Grenoble, France ; Labeye, P. ; Gidon, P. ; Mottier, P.

This paper presents the joining of active nonlinear polymer waveguides with passive silicon nitride waveguides (SiO2-Si 3N4-SiO2) to form an integrated Mach-Zehnder modulator with a lateral electrode configuration on a silicon substrate. Passive and active waveguides are based on a silicon-nitride-strip guiding structure. In the active waveguide a nonlinear polymer layer is used to obtain an index modulation via the electrooptic effect. Despite the silicon nitride strip based guiding structure, 63% of the energy of the fundamental mode is guided in the nonlinear polymer (provided by Flamel Technology, Venissieux, France). Poling with field strengths up to 75 V/μm applied to the lateral electrodes has been employed to orient the chromophores. A half wave voltage of 35 V has been measured for an electrooptic coefficient of 5.8 pm/V at a wavelength of 1.3 μm. Optical loss measurements have been done on polymer and passive waveguides. The best results have been 1.8 dB/cm for the active and 0.78 dB/cm for the passive waveguides leading to a total loss of 6 dB for a modulator with an interaction length of 2.5 cm. The coupling loss between a laser diode and the passive waveguide structure was measured to be at least 4.6 dB using a microscope objective and piezo-electric displacement elements. Stability tests under atmospheric conditions have shown a decrease of the electrooptic coefficient which might be due to the hygroscopic behavior of the active polymer. The bandwidth of the modulator has been determined to be 4 MHz

Published in:

Lightwave Technology, Journal of  (Volume:13 ,  Issue: 10 )