By Topic

Optimum parameter estimation for non-local means image de-noising using corner information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nasiri Avanaki, A. ; Control & Intell. Process. Center of Excellence, Univ. of Tehran, Tehran ; Diyanat, A. ; Sodagari, S.

Non-local means (a.k.a. NL-means) method for image de-noising averages the similar parts of an image to reduce random noise. The de-noising performance of the algorithm, however, highly depends on the values of its parameters. In this paper, we introduce a method for finding the optimum parameters, present a linear estimation for the h parameter, and demonstrate that the most important parameter in this method is almost independent of the image and depends only on the noise. We also show that the de-noising performance can be increased by using corner information of noisy image. Our modifications result in better de-noising performance at less computational cost.

Published in:

Signal Processing, 2008. ICSP 2008. 9th International Conference on

Date of Conference:

26-29 Oct. 2008