By Topic

Parameter estimation of the Hodgkin-Huxley model using metaheuristics: Application to neuromimetic analog integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
L. Buhry ; IMS Laboratory, UMR 5218 CNRS, University of Bordeaux - ENSEIRB, 351, Cours de la Libération 33405 TALENCE - FRANCE ; S. Saighi ; A. Giremus ; E. Grivel
more authors

In 1952 Hodgkin and Huxley introduced the voltage-clamp technique to extract the parameters of the ionic channel model of a neuron. Although this method is widely used today, it has a lot of disadvantages. In this paper, we propose an alternative approach to the estimation method of the voltage-clamp technique using metaheuristics such as simulated annealing, genetic algorithms and differential evolution. This method avoids approximations of the original technique by simultaneously estimating all the parameters of a single ionic channel with a single fitness function. To compare the different methods, we apply them on measurements from a neuromimetic integrated circuit. This circuit, due to its analog behavior, provides us noisy data like a biological system. Therefore we can validate the efficiency of our method on experimental-like data.

Published in:

2008 IEEE Biomedical Circuits and Systems Conference

Date of Conference:

20-22 Nov. 2008