By Topic

A multiple expert-based melanoma recognition system for dermoscopic images of pigmented skin lesions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rahman, M.M. ; Dept. of Comput. Sci. & Software Eng., Concordia Univ., Montreal, QC ; Bhattacharya, P. ; Desai, B.C.

This paper presents an integrated decision support system for an automated melanoma recognition of dermoscopic images based on multiple expert fusion. In this context, the ultimate aim is to support decision making by predicting image categories (e.g., melanoma, benign and dysplastic nevi) by combining outputs from different classifiers. A fast and automatic segmentation method to detect the lesion from the background healthy skin is proposed and lesion-specific local color and texture-related features are extracted. For the classification, combining experts which are classifiers with different structures, are examined as alternative solution instead of an individual classifier. In this approach, probabilistic outputs of the experts are combined based on the combination rules that are derived by following Bayespsila theorem. The category label with the highest confidence score is considered to be the class of a test image. Experimental results on a collection of 358 dermoscopic images demonstrate the effectiveness of the proposed expert fusion-based approach.

Published in:

BioInformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on

Date of Conference:

8-10 Oct. 2008