By Topic

Differential gene expression graphs: A data structure for classification in DNA microarrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Benso, A. ; Dept. of Control & Comput. Eng., Politec. di Torino, Torino ; Di Carlo, S. ; Politano, G. ; Sterpone, L.

This paper proposes an innovative data structure to be used as a backbone in designing microarray phenotype sample classifiers. The data structure is based on graphs and it is built from a differential analysis of the expression levels of healthy and diseased tissue samples in a microarray dataset. The proposed data structure is built in such a way that, by construction, it shows a number of properties that are perfectly suited to address several problems like feature extraction, clustering, and classification.

Published in:

BioInformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on

Date of Conference:

8-10 Oct. 2008