By Topic

Modeling of regional dynamic CO2 reactivity in respiratory related brain areas using BOLD fMRI

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
G. D. Mitsis ; Centre for Functional Magnetic Resonance, Imaging of the Brain (FMRIB), University of Oxford, United Kingdom ; A. K. Harvey ; S. Dirckx ; S. D. Mayhew
more authors

The cerebrovascular bed is very sensitive to CO2 changes, particularly the areas responsible for generation and control of respiratory rhythm. We have used BOLD functional magnetic resonance imaging (fMRI) and externally induced CO2 challenges that stimulate respiration, to identify respiratory areas in-vivo in humans and to quantify the dynamic effects of CO2 on the BOLD fMRI signal (dynamic CO2 reactivity). We sought to identify regional differences in dynamic reactivity within the brainstem and other respiratory related areas (thalamus) by using linear impulse response (IR) and nonlinear Volterra models, as well as experimental measurements obtained during spontaneous breathing and larger externally induced step CO2 changes (end-tidal forcing). The results revealed areas in the brainstem and thalamus that responded strongly to the external CO2 stimuli, which correspond to respiratory nuclei identified in recent rodent studies, as well as pronounced regional differences in CO2 reactivity.

Published in:

BioInformatics and BioEngineering, 2008. BIBE 2008. 8th IEEE International Conference on

Date of Conference:

8-10 Oct. 2008