By Topic

Incoherent Combining and Atmospheric Propagation of High-Power Fiber Lasers for Directed-Energy Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sprangle, P. ; Naval Res. Lab., Washington, DC ; Ting, A. ; Penano, J. ; Fischer, R.
more authors

High-power fiber lasers can be incoherently combined to form the basis of a directed high-energy laser system which is highly efficient, compact, robust, low-maintenance and has a long operating lifetime. This approach has a number of advantages over other beam combining methods. We present results of the first field demonstration of incoherent beam combining using kilowatt-class, single-mode fiber lasers. The experiment combined four fiber lasers using a beam director consisting of individually controlled steering mirrors. Propagation efficiencies of ~90%, at a range of 1.2 km, with transmitted continious-wave power levels of 3 kW were demonstrated in moderate atmospheric turbulence. We analyze the propagation of combined single-mode and multimode beams in atmospheric turbulence and find good agreement between theory, simulations and experiments.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:45 ,  Issue: 2 )