Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Cache Energy Control for Storage: Power System Integration and Education Based on Analogies Derived From Computer Engineering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Strunz, K. ; Tech. Univ. Berlin, Berlin, Germany ; Louie, Henry

Energy storage is an enabling technology for power system integration of renewable sources, while data storage enables computer system integration. In this paper, a functional analogy relating energy and data storage is derived. Battery or hydrogen storage can provide large energy capacity similar to a hard disk providing large data capacity. Supercapacitors or flywheels provide fast and frequent access to cache energy similar to the computer's RAM providing fast and frequent access to data. In analogy to computer engineering, a cache control that coordinates the operation of a multilevel storage consisting of such complementary capacity and access-oriented storage technologies is designed. It is illustrated how for an industrial distributed energy system with renewable generation, local load, fueling station, and connections to the electricity and gas distribution networks, the cache control provides energy management to support a modular plug-and-play-like system integration. The benefit of the analogy in education is evaluated on a representative sample of electrical engineering students at the University of Washington. While familiar with computing, students do not typically have the same level of exposure to power engineering. The understanding of distributed energy systems concepts is shown to improve thanks to this bridging analogy between computer and power engineering.

Published in:

Power Systems, IEEE Transactions on  (Volume:24 ,  Issue: 1 )