By Topic

Distributed Connectivity Control of Mobile Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Michael M. Zavlanos ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA ; George J. Pappas

Control of mobile networks raises fundamental and novel problems in controlling the structure of the resulting dynamic graphs. In particular, in applications involving mobile sensor networks and multiagent systems, a great new challenge is the development of distributed motion algorithms that guarantee connectivity of the overall network. Motivated by the inherently discrete nature of graphs as combinatorial objects, we address this challenge using a key control decomposition. First, connectivity control of the network structure is performed in the discrete space of graphs and relies on local estimates of the network topology used, along with algebraic graph theory, to verify link deletions with respect to connectivity. Tie breaking, when multiple such link deletions can violate connectivity, is achieved by means of gossip algorithms and distributed market-based control. Second, motion control is performed in the continuous configuration space, where nearest-neighbor potential fields are used to maintain existing links in the network. Integration of the earlier controllers results in a distributed, multiagent, hybrid system, for which we show that the resulting motion always ensures connectivity of the network, while it reconfigures toward certain secondary objectives. Our approach can also account for communication time delays as well as collision avoidance and is illustrated in nontrivial computer simulations.

Published in:

IEEE Transactions on Robotics  (Volume:24 ,  Issue: 6 )